تخمیـن فشار متوسط دینامیکی در جریانهای دوفازی آب و هوا با استفاده از شبکه-های عصبی مصنوعی و سیستم عصبی- فازی تطبیقی
نویسندگان
چکیده مقاله:
جریان دوفازی در سازههای گوناگون از جمله سیستمهای انتقال آب و خطوط لوله دریایی انتقال نفت و در سازههای هیدرولیکی از جمله سرریزهای نیلوفری، شفتهای قائم، کالورتها و تونلها و مجاری بسته اتفاق میافتد. پیشبینی فشار دینامیکی در جریانهای دوفازی جهت طراحی بهینه و مناسب و جلوگیری از وقوع مشکلات ناخواسته در اثر ایجاد جریانهای دوفازی امری ضروری است. در این تحقیق مدلهایی جامع جهت پیشبینی فشار دینامیکی در جریانهای دوفازی آب و هوا با استفاده از شبکههای عصبی و سیستم عصبی- فازی تطبیقی (انفیس) ارائه میشود. از آنجایی که مدل انفیس در مواجهه با فرآیندهای پیچیده با تعداد پارامترهای زیاد، قوانین زیادی تولید میکند و حجم محاسبات را بیشتر میکند، استفاده از پیشپردازش خوشهبندی فازی کارآیی مدل انفیس را بیشتر و حجم محاسبات را کمتر میکند. استفاده از آلگوریتم بهینهسازی ازدحام ذرات یکی دیگر از تکنیکهای بهبود نتایج در این تحقیق است. در این پژوهش برای تنظیم وزنها و بایاسهای شبکههای عصبی از آلگوریتم ازدحام ذرات استفاده شده است. در مدلهای انفیس نیز در رابطه با تنظیم پارامترها، الگوریتم ترکیبی ازدحام ذرات و حداقل مربعات استفاده شده است. در این بررسی مشخص شد که نتایج حاصل از مدلهای انفیس همراه با پیشپردازش خوشهبندی فازی و آلگوریتم بهینهسازی ازدحام ذرات دارای دقت بالاتری هستند.
منابع مشابه
پیشبینی بلند مدت رواناب با استفاده از شبکه های عصبی مصنوعی و سیستم استنتاج فازی
مدلهای مفهومی بر مبنای هوش مصنوعی، اغلب برای پیشبینیهای کوتاه مدت و میان مدت هیدورلوژیکی به کار رفته اند. در این مقاله با استفاده از مفهوم تولید مجموعه ای از پیشبینیها1 (ESP) و تفکیک مدلسازی برای متغیرهای اقلیمیو هیدرولوژیکی، از مدلهای مفهومی برای پیشبینی بلندمدت حجم جریان رودخانه زاینده رود در محل ورودی به سد زاینده رود استفاده میشود. سیستم استنتاج فازی برای پیشبینی بار...
متن کاملمدلسازی بارش- رواناب با استفاده از شبکه عصبی مصنوعی و شبکه فازی- عصبی تطبیقی در حوزه آبخیز کسیلیان
Rainfall runoff modeling and prediction of river discharge is one of the important practices in flood control and management, hydraulic structure design and drought management. The present article aims to simulate daily streamflow in Kasilian watershed using an artificial neural network (ANN) and neuro-fuzzy inference system (ANFIS). The intelligent methods have the high potential for dete...
متن کاملعملکرد شبکه عصبی مصنوعی و شبکه عصبی فازی- تطبیقی در برآورد غلظت ازن در شهر تهران
در سالهای اخیر آلودگی هوا به عنوان یکی از بزرگ ترین مشکلات زیست محیطی در سطح جهانی مطرح شده است. ازن تروپوسفری یک آلاینده ثانویه است و سبب بروز مشکلات تنفسی و تاثیر حاد بر گیاهان میشود. در این مطالعه به دلیل غیر خطی بودن و پیچیدگی این پدیدههابه مقایسه برآورد غلظت آلاینده ازن با استفاده از شبکه عصبی مصنوعی و شبکه عصبی فازی-تطبیقی پرداخته شد. در پژوهش حاضر از متغیرهای هواشناسی در ...
متن کاملارزیابی قابلیت مدل های سیستم استنتاج فازی-عصبی تطبیقی، شبکه عصبی مصنوعی و رگرسیونی در تحلیل منطقه ای سیلاب
سابقه و هدف: توسعه روشهای برآورد فراوانی منطقه ای سیلاب در مناطق فاقد ایستگاه های اندازهگیری یکی از اولین اهداف اصلی در مسایل روز هیدرولوژی می باشد. ارزیابی فراوانی سیلاب در حوضه های فاقد ایستگاههای اندازه گیری، معمولاً توسط ایجاد روابط مناسب آماری (مدلها)بین سیلاب و ویژگیهای فیزیکی حوضه انجام می گیرد. تاکنون معادلات متعددی در زمینه برآورد دبی سیلاب در مناطق مختلف از جمله حوضه کرخه...
متن کاملپیشبینی جریان روزانه رودخانه اهرچای با استفاده از روش های شبکه های عصبی مصنوعی (ANN) و مقایسه آن با سیستم استنتاج فازی- عصبی تطبیقی (ANFIS)
در طی سالهای اخیر پیشبینی فرآیندهای هیدرولوژیکی به منظور بهرهبرداری پایدار از منابع آب با استفاده از روشهای هوشمند مورد توجه دست اندرکاران بخش آب قرار گرفته است. در این تحقیق با بهرهگیری از شبکههای عصبی مصنوعی (ANN) و سیستم استنتاج فازی- عصبی تطبیقی (ANFIS) اقدام به پیشبینی دبی جریان روزانه رودخانه اهر چای واقع در استان آذربایجان شرقی در ایستگاه های اورنگ، برمیس و تازه کند گردید. بر...
متن کاملتولید شتابنگاشت مصنوعی زلزله با استفاده از شبکه عصبی فازی
نیاز روزافزون به تحلیل دینامیکی تاریخچه زمانی و عدموجود شتابنگاشتهای مناسب در مناطق مختلف، تولید شتابنگاشتهای مصنوعی سازگار با طیف طرح را ضروری میسازد. هدف اصلی این تحقیق ارائه روشی نوین، بر اساس تبدیل بسته موجک و روش های هوش مصنوعی برای تولید شتابنگاشت مصنوعی زلزله سازگار با طیف طرح بر اساس مقدار بزرگا، فاصله از گسل و طیف مربوطه می باشد. در این تحقیق از شبکه های عصبی فازی و آنالیز موجک پک...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 48.2 شماره 91
صفحات 71- 80
تاریخ انتشار 2018-08-23
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023